Determination of surface-accessible acidic hydroxyls and surface area of lignin by cationic dye adsorption.

نویسندگان

  • Mika Henrikki Sipponen
  • Ville Pihlajaniemi
  • Kuisma Littunen
  • Ossi Pastinen
  • Simo Laakso
چکیده

A new colorimetric method for determining the surface-accessible acidic lignin hydroxyl groups in lignocellulose solid fractions was developed. The method is based on selective adsorption of Azure B, a basic dye, onto acidic hydroxyl groups of lignin. Selectivity of adsorption of Azure B on lignin was demonstrated using lignin and cellulose materials as adsorbents. Adsorption isotherms of Azure B on wheat straw (WS), sugarcane bagasse (SGB), oat husk, and isolated lignin materials were determined. The maximum adsorption capacities predicted by the Langmuir isotherms were used to calculate the amounts of surface-accessible acidic hydroxyl groups. WS contained 1.7-times more acidic hydroxyls (0.21 mmol/g) and higher surface area of lignin (84 m(2)/g) than SGB or oat husk materials. Equations for determining the amount of surface-accessible acidic hydroxyls in solid fractions of the three plant materials by a single point measurement were developed. A method for high-throughput characterization of lignocellulosic materials is now available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of activation factors on adsorption of cationic dye, methylene blue, by activated bentonite

The aim of this investigation was to study the relationship between activation factors and adsorption of cationic dye, methylene blue MB, by activated bentonite. The adsorption index was investigated as a function of acid type, time and temperature. A commercial bentonite was selected as a starting material and the effect of heat treatment on MB adsorption were determined in a batch setup. Thou...

متن کامل

Adsorption of the Cationic Dye Ethyl Violet on Acid and Alkali-Treated Wild Carob Powder, A Low-Cost Adsorbent Derived from Forest Waste

The effect of acid-alkaline treatment of lignocellulosic material (wild carob forest wastes) on Ethyl violet adsorption was investigated. It was found that surface chemistry plays an important role in Ethyl Violet (EV) adsorption. HCl treatment produces more active acidic surface groups such as carboxylic and lactone, resulting in an increase in the adsorption of EV dye. The adsorp...

متن کامل

Surface Modified Cobalt Ferrite Nanoparticles with Cationic Surfactant: Synthesis, Multicomponent Dye Removal Modeling and Selectivity Analysis

Herein, magnetic cobalt ferrite nanoparticles (CFNPs) was synthesized and its surface was modified by cationic surfactant (cetyltrimethyl ammonium bromide: CTAB) and its potential to selective removal of dye from multicomponent (ternary) system was investigated. Direct red 31 (DR31), Direct green 6 (DG6) and Direct red 23 (DR23) were used as a model dyes. The characteristics of the synthesi...

متن کامل

One-Step Fabrication of Dual Responsive Lignin Coated Fe3O4 Nanoparticles for Efficient Removal of Cationic and Anionic Dyes

A new, simple one-step approach has been developed to synthesize lignin and lignin amine coated Fe₃O₄ nanoparticles. These nanoparticles (lignin magnetic nanoparticles (LMNPs) and lignin amine magnetic nanoparticles (LAMNPs)) are found to possess not only magnetic response but also pH-dependent adsorption behavior. Results show that the combination of lignin with nanoparticles increased the ads...

متن کامل

Preparation and Characterization of Nano-lignin Biomaterial to Remove Basic Red 2 dye from aqueous solutions

The present study prepares alkali lignin (AL) via acidification of black liquor, obtained from a pulp and paper factory. The average molecular weight of AL (equal to 2,530 g/mol) has been determined with gel permeation chromatography. AL has been modified by ethylene glycol, while lignin nanoparticles (LN) has been prepared through acid precipitation technology, their size being assessed by mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 169  شماره 

صفحات  -

تاریخ انتشار 2014